Air Oil Coolers

The LAC air oil cooler, with single-phase or three-phase AC motor, is optimised for use in the industrial sector. The maximum cooling capacity is 300kW at ETD + $40^{\circ}C$.

Maximum Working Temperature: +120°C

Maximum Static Working Pressure: 21 bar Maximum Dynamic Working Pressure: 14 bar

	LAC Range (In-line Cooler)
LAC-1	LAC2-002-2-C-00-000-0-0
LAC-2	LAC2-007-4-D-00-000-0-0
LAC-3	LAC2-011-4-D-00-000-0-0
LAC-4	LAC2-016-4-D-00-000-0-0
LAC-5	LAC2-023-4-D-00-000-0-0
LAC-6	LAC-044-4-A-00-000-0-0
LAC-7	LAC-078-6-A-00-000-0-0

The Olaer Group has been part of Parker Hannifin since July 1st, 2012. With manufacturing and sales in 14 countries in North America, Asia and Europe, the Olaer Group expands Parker's presence in geographic growth areas and offers expertise in hydraulic accumulator and cooling systems for target growth markets such as oil and gas, power generation and renewable energy.

LAC Air Oil Coolers For industrial use – maximum cooling capacity 300 kW

The LAC air oil cooler with single-phase or three-phase AC motor is optimized for use in the industrial sector. Together with a wide range of accessories, the LAC cooler is suitable for installation in most applications and environments. The maximum cooling capacity is 300 kW at ETD 40 °C. Choosing the right cooler requires precise system sizing. The most reliable way to size is with the aid of our calculation program. This program, together with precise evaluations from our experienced, skilled engineers, gives you the opportunity for more cooling per € invested.

Overheating - an expensive problem

An under-sized cooling capacity produces a temperature

balance that is too high. The consequences are poor lubricating properties, internal leakage, a higher risk of cavitation, damaged components, etc. Overheating leads to a significant drop in cost-efficiency and environmental consideration.

Temperature optimisation - a basic prerequisite for cost-efficient operation Temperature balance in a hydraulic system occurs when the cooler can cool down the energy input that the system

does not consume - the system's lost energy: (Ploss = Pcool = Pin – Pused). Temperature optimisation means

Temperature optimisation means that temperature balance occurs at the system's ideal working temperature – the temperature at which the oil's viscosity and the air content comply with recommended values.

The correct working temperature produces a number of economic and environmental benefits:

- The hydraulic system's useful life is extended.
- The oil's useful life is extended.
- The hydraulic system's availability increases – more operating time and fewer shutdowns.
- Service and repair costs are reduced.

• High efficiency level maintained in continuous operation – the system's efficiency falls if the temperature exceeds the ideal working temperature.

Clever design and the right choice of materials and components produce a long useful life, high availability and low service and maintenance costs. Easy to maintain and easy to retrofit in many applications.

Compact design and light weight.

Cooler matrix with low pressure drop and high cooling capacity.

LAC-M and LAC-X

LAC air oil coolers are also available in two special versions, LAC-X (ATEX version), approved for applications where there may be an explosive environment above ground, and LAC-M, adapted to be better able to deal with corrosion attacks, for example in marine environments.

Calculate the Cooling Capacity Requirement

Choose the right kind of cooler

Enter your values

... suggested solution

Better energy consumption means not only less environmental impact, but also reduces operating costs, i.e. more cooling per € invested.

More Cooling per € with precise calculations and our engineers' support

Optimal sizing produces efficient cooling. Correct sizing requires knowledge and experience. Our calculation program, combined with our engineers' support, gives you access to this very knowledge and experience. The result is more cooling per € invested. The user-friendly calculation program can be downloaded from www.parker.com/acde.

Valuable system review into the bargain

A more wide-ranging review of

the hydraulic system is often a natural element of cooling calculations. Other potential system improvements can then be discussed – e.g. filtering, offline or online cooling, etc. Contact us for further guidance and information.

Parker Hannifin's quality and performance guarantee insurance for your operations and systems

A constant striving towards more cost-efficient and environment friendly hydraulic systems requires continuous development. Areas where we are continuously seeking to improve performance include cooling capacity, noise level, pressure drop and fatigue. Meticulous quality and performance tests are conducted in our laboratory. All tests and measurements take place in accordance with standardised methods - cooling capacity in accordance with EN1048, noise level ISO 3743, pressure drop EN 1048 and fatigue ISO 10771-1.

The cooling capacity curves are based on the inlet oil temperature and the ambient air temperature. An oil temperature of 60 °C and an air temperature of 20 °C produce a temperature difference of 40 °C. Multiply by kW/°C for total cooling capacity.

Cooling capacity tolerance \pm 10% kW.

TYPE		Acoustic pressure level LpA dB(A) 1m*	No. of poles/ Capacity kW	Weight kg (approx)
LAC2	002-2-single-phase	50	2-0.05	4
LAC2	003-2-single-phase	61	2-0.05	5
LAC2	004-2-single-phase	63	2-0.07	6
LAC2	004-2-single-phase	63	2-0.07	6
LAC2	007-4-single-phase	65	2-0.08	9
LAC2	007-2-single-phase	79	2-0.24	10
LAC2	007-4-three-phase	62	4-0.25	15
LAC2	007-2-three-phase	79	2-0.55	16
LAC2	011-4-three-phase	67	4-0.25	20
LAC2	011-2-three-phase	82	2-1.10	25
LAC2	016-6-three-phase	60	6-0.18	23
LAC2	016-4-three-phase	70	4-0.37	24
LAC2	016-2-three-phase	86	2-1.10	27
LAC2	023-6-three-phase	64	6-0.18	35
LAC2	023-4-three-phase	76	4-0.75	36
LAC	033-6-three-phase	74	6-0.55	45
LAC	033-4-three-phase	84	4-2.20	52
LAC	044-6-three-phase	76	6-0.55	63
LAC	044-4-three-phase	85	4-2.20	65
LAC	056-8-three-phase	73	8-0.75	73
LAC	056-6-three-phase	81	6-1.50	75
LAC	056-4-three-phase	84	4-3.0	75
LAC	058-8-three-phase	74	8-0.75	80
LAC	058-6-three-phase	82	6-1.50	82
LAC	058-4-three-phase	85	4-3.0	82
LAC	076-8-three-phase	79	8-1.10	130
LAC	076-6-three-phase	86	6-2.20	140
LAC	078-8-three-phase	80	8-1.10	136
LAC	078-6-three-phase	87	6-2.20	146
LAC	110-8-three-phase	84	8-2.20	160
LAC	110-6-three-phase	90	6-5.50	170
LAC	112-8-three-phase	85	8-2.20	168
LAC	112-6-three-phase	91	6-5.50	178
LAC	113-8-three-phase	80	8-2.20	218
LAC	113-6-three-phase	88	6-5.50	237
LAC	200-8-three-phase	86	8-4.00	365
LAC	200-6-three-phase	92	6-11.00	405

* = Noise level tolerance \pm 3 dB(A).

TYPE		Α	в	С	D	Е	F	G	н	Т	J	К	L	Mø
LAC2	002-2-single-phase	165	74	82	189	-	G½	190	72	97	105	167	39	9
LAC2	003-2-single-phase	244	134	82	223	71	G1	148	90	114	161	218	31	9x14
LAC2	004-4-single-phase	267	134	82	256	69	G1	148	90	131	165	222	28	9x14
LAC2	004-2-single-phase	267	134	82	256	69	G1	148	90	131	165	222	28	9x14
LAC2	007-4-single-phase	340	203	77	345	54	G1	267	160	175	189	249	49	9x14
LAC2	007-2-single-phase	340	203	77	345	54	G1	267	160	175	189	249	49	9x14
LAC2	007-4-three-phase	365	203	64	395	42	G1	510	160	213	225	429	50	9
LAC2	007-2-three-phase	365	203	64	395	42	G1	510	160	213	225	434	50	9
LAC2	011-4-three-phase	440	203	62	470	41	G1	510	230	250	249	453	50	9
LAC2	011-2-three-phase	440	203	62	470	41	G1	510	230	250	249	475	50	9
LAC2	016-6-three-phase	496	203	66	526	46	G1	510	230	278	272	474	50	9
LAC2	016-4-three-phase	496	203	66	526	46	G1	510	230	278	272	479	50	9
LAC2	016-2-three-phase	496	203	66	526	46	G1	510	230	278	272	496	50	9
LAC2	023-6-three-phase	580	356	63	610	44	G1	510	305	320	287	489	50	9
LAC2	023-4-three-phase	580	356	63	610	44	G1	510	305	320	287	511	50	9
LAC	033-6-three-phase	692	356	53	722	42	G1¼	510	406	376	318	534	50	9
LAC	033-4-three-phase	692	356	53	722	42	G1¼	510	406	376	318	618	50	9
LAC	044-6-three-phase	692	356	53	866	59	G1¼	510	584	448	343	559	50	9
LAC	044-4-three-phase	692	356	53	866	59	G1¼	510	584	448	343	643	50	9
LAC	056-8-three-phase	868	356	49	898	43	G1¼	510	584	448	343	643	50	9
LAC	056-6-three-phase	868	508	49	898	43	G1¼	510	584	464	368	668	50	9
LAC	056-4-three-phase	868	508	49	898	43	G1¼	510	584	464	368	668	50	9
LAC	058-8-three-phase	868	508	49	898	43	G2	510	584	464	388	652	30	9
LAC	058-6-three-phase	868	508	49	898	43	G2	510	584	464	388	682	30	9
LAC	058-4-three-phase	868	508	49	898	43	G2	510	584	464	388	688	30	9
LAC	076-8-three-phase	1022	518	41	1052	45	G1½	800	821	541	393	693	70	14
LAC	076-6-three-phase	1022	518	41	1052	45	G1½	800	821	541	393	710	70	14
LAC	078-8-three-phase	1022	518	41	1052	45	G2	800	821	541	413	713	50	14
LAC	078-6-three-phase	1022	518	41	1052	45	G2	800	821	541	413	730	50	14
LAC	110-8-three-phase	1185	600	54	1215	45	G2	800	985	623	418	785	70	14
LAC	110-6-three-phase	1185	600	54	1215	45	G2	800	985	623	418	785	70	14
LAC	112-8-three-phase	1185	600	54	1215	45	G2	800	985	623	438	805	50	14
LAC	112-6-three-phase	1185	600	54	1215	45	G2	800	985	623	438	805	50	14
LAC	113-8-three-phase	1200	600	82	1215	45	G2	860	985	623	465	833	82	14
LAC	113-6-three-phase	1200	600	82	1215	45	G2	860	985	623	465	871	82	14
LAC	200-8-three-phase				0000 00		2000 -	ko obu w	e fer		for most			

OUTLET

LAC 200-6-three-phase

Please see LAC 200 brochure for more information

Key for LAC/LAC2 Air Oil Coolers

All positions must be filled in when ordering:

EXAMPLE: LAC2 - 016 - 6 - A - 50 - T20 - D - 0 1 2 3 4 5 6 7 8

1. AIR OIL COOLER WITH AC MOTOR = LAC / LAC2

2. COOLER SIZE

002, 003, 004, 007, 011, 016, 023, 033, 044, 056, 058, 076, 078, 110, 112, 113 and 200.

3. NUMBER OF POLES, MOTOR

2 - pole	= 2
4 - pole	= 4
6 - pole	= 6
8 - pole	= 8

4. VOLTAGE AND FREQUENCY (IE2 GUARANTEED AT 50HZ)

1 • • •	
No motor	= 0
230/400V 50Hz ¹⁾	= A
460V alt 480V 60Hz ¹⁾	= B
Single-phase 230V	
50Hz (not IE2)	= C
230/400V 50Hz 460 alt	
480V 60Hz ²⁾	= D
500V 50Hz (not standard) = E
400/690V 50Hz 460 alt	
480V 60Hz	= F
525V 50Hz, 575V 60Hz	= G
Motor for special voltage	
or frequency (stated in	
plain language) ³⁾	= X
1) for LAC 033 to LAC 113	
2) For LAC2 007 to LAC2 0233) For other options contact Part	kor for
assistance. All motors apply to I	
IEC 60072 and EN 50347	,

5. THERMO CONTACT

No thermo contact	= 00
40 °C	= 40
50 °C	= 50
60 °C	= 60
70 °C	= 70
80 °C	= 80
90 °C	= 90

6. COOLER MATRIX

Standard	= 000				
Two-pass	= T00				
Built-in, pressure-controlled					
bypass, single-pass					
2 bar	= S20				
5 bar	= S50				
8 bar	= S80				

The information in this brochure is subject to change without prior notice.

Built-in, pressure-contro bypass, two-pass*	lled
	TOO
2 bar	= T20
5 bar	= T50
8 bar	= T80
Built-in temperature and	
pressure-controlled bypa	
single-pass	
50 °C, 2.2 bar	= S25
60 °C, 2.2 bar	= S26
70 °C, 2.2 bar	= S27
90 °C, 2.2 bar	= S29
Built-in temperature and	
pressure-controlled bypa	ass,
two-pass*	
50 °C, 2.2 bar	= T25
60 °C, 2.2 bar	= T26
	= T27
70 °C, 2.2 bar	
90 °C, 2.2 bar	= T29
* = not for LAC2 002 - LAC2 004	
7. MATRIX GUARD	

No guard	= 0
Stone guard	= S
Dust guard	= D
Dust and stone guard	= P

8. STANDARD/SPECIAL

Standard	= O
Special	= Z

TECHNICAL SPECIFICATION

FLUID COMBINATIONS

Mineral oil	HL/HLP in accordance with DIN 51524
Oil/water	HFA, HFB in
emulsion	accordance with CETOP RP 77H
Water glycol	HFC in accordance with CFTOP BP 77H
Phosphate ester	HFD-R in
	accordance with CETOP RP 77H

MATERIAL	
Cooler matrix	Aluminum
Fan blades/hub	Glass fibre reinforced polypropylene/ Aluminum

8 Fan housing Steel Fan guard Steel Other parts Steel Surface Electrostatically treatment powder-coated

TECHNICAL DATA, COOLER MATRIX

Maximum static	
operating pressure	21 bar
Dynamic operating	
pressure	14 bar*
Heat transfer limit	±6%
Maximum oil inlet	
temperature	120 °C
* Tested in accordance with ISO/I	DIS 10771-1

TECHNICAL DATA FOR 3-PHASE MOTOR

3-phase asynchronous m	otors in			
accordance with IEC 34-1 and				
IEC 72 in accordance with DIN				
57530/VDE 0530				
Insulation class	F			
Rise of temperature	В			
Protection class	IP 55			

TECHNICAL DATA FOR 1-PHASE MOTOR

Insulation class	В
Rise of temperature	В
Protection class	IP 44

TECHNICAL DATA FOR 3-PHASE MOTOR LAC2 004

Rated voltage	230/400V
	50/60Hz
Insulation class	В
Rise of temperature	В
Protection class	IP 44

COOLING CAPACITY CURVE

The cooling capacity curves in this technical data sheet are based on tests in accordance with EN 1048 and have been produced using oil type ISO VG 46 at 60 °C.

CONTACT PARKER HANNIFIN FOR ADVICE ON

Oil temperatures	>	120	°C	
Oil viscosity	>	100	cSt	
Aggressive environm	en	ts		
Ambient air rich in particles				
High-altitude location	าร			